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Abstract

Sociality and timing are tightly interrelated in human interaction as seen in turn-taking or synchronised dance movements. 
Sociality and timing also show in communicative acts of other species that might be pleasurable, but also necessary for survival. 
Sociality and timing often co-occur, but their shared phylogenetic trajectory is unknown: How, when, and why did they become 
so tightly linked? Answering these questions is complicated by several constraints; these include the use of divergent operational 
definitions across fields and species, the focus on diverse mechanistic explanations (e.g., physiological, neural, or cognitive), 
and the frequent adoption of anthropocentric theories and methodologies in comparative research. These limitations hinder the 
development of an integrative framework on the evolutionary trajectory of social timing and make comparative studies not as 
fruitful as they could be. Here, we outline a theoretical and empirical framework to test contrasting hypotheses on the evolution of 
social timing with species-appropriate paradigms and consistent definitions. To facilitate future research, we introduce an initial set 
of representative species and empirical hypotheses. The proposed framework aims at building and contrasting evolutionary trees 
of social timing toward and beyond the crucial branch represented by our own lineage. Given the integration of cross-species and 
quantitative approaches, this research line might lead to an integrated empirical-theoretical paradigm and, as a long-term goal, 
explain why humans are such socially coordinated animals.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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1. Introduction: what is social timing?

The term “social timing” refers to the rather intuitive notion that sociality and timing are tightly interrelated in 
inter-individual interaction: for example, some bird species engage in precise duets, where the partners’ vocalisations 
can either overlap or alternate with extreme temporal precision [1]; similarly, a human conversation flows based on the 
unwritten rules of timely turn-taking, and crowds at concerts spontaneously synchronise their movements and voices 
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[2,3]. In contrast to other instances of coordinated timing (e.g., with a metronome, with an external sound source 
like music), social timing is a dynamic phenomenon of mutual adaptation in time between two or more agents. This 
coordination supports behaviours necessary for survival, but also rewarding and communicative acts [4]. Under this 
broad umbrella term, we can thus include several instances of coordinated timing [5], from chorusing to turn-taking 
and from music playing to courtship behaviour [6,7]. While these diverse situations highlight the ubiquity of social 
timing, they also display the challenges we face in trying to harness it: is it possible to reconcile the finesse of a 
pleasurable musical ensemble with the primary need for mating under the same conceptual hooding? To answer these 
questions, we propose a comparative framework: the study of social timing abilities in a broad range of animal species 
will help unveil the evolution of social timing and reveal the common ultimate functions behind apparently diverse 
proximate functions (see Table 1; [8]).

Social timing, as defined here, may allow embracing a comparative perspective and reconciling some of the in-
consistencies emerging from previous research. To achieve this aim, social timing should be conceptualised and 
operationalised in ways that are directly applicable to non-human animals, thus expanding previous propositions built 
predominantly around humans, such as the Socio-Temporal Hypothesis [9]. Schirmer and colleagues (2016) discussed 
the existence of a bi-directional interaction between social and individual timing. While the authors acknowledged 
the existence of temporal coordination in other species, their proposition remained human-centred. For example, the 
proposed neurobiological underpinnings included the striatal beat frequency model, which primarily accounts for 
cortical oscillatory activity (e.g., [10]). However, this model effectively excludes numerous species that lack a cortex 
while still displaying clear and complex social timing behaviour, such as fireflies, ants, and bees (e.g., [11]).

Further, existing literature is often unclear about what is meant by “sociality” and “timing” (or combinations 
thereof), with divergent operational definitions across domains and species. For example, sociality has been defined 
as a function of either pair-bonding and group size (e.g., [12]) or, more loosely, as the interaction between agents 
with a communicative intent [9], often dependent on brain size ([13,14]; but see [15] for a different viewpoint). It 
is unclear whether these definitions apply to dyads, groups, or both, but also how the biology of different species 
may factor in: from a comparative angle, several of these definitions exclude some species a-priori [6]. For instance, 
what is the communicative intent of a firefly? Do bees have a sense of agency? The lack of a dedicated framework 
complicates a better understanding of sociality, timing, and their shared evolutionary trajectory: Is social timing a 
highly conserved trait, common to many species, or does it derive from a recent evolutionary leap? If so, was this 
jump done by humans only, or is it shared with evolutionary close species such as other primates (e.g., [16])? Can 
we reconstruct the building blocks of social timing in living organisms with the help of artificial systems (i.e., agent-
based models, robotics)? Here, we lay the necessary groundwork for answering these questions: we start by providing 
a wide-angle comparative review of the social timing literature, which we then use to elaborate on a novel framework 
including operational definitions, methods, and hypotheses that facilitate a comparative approach, mindful of the 
biology and characteristics of different species. We also suggest an initial, taxonomically diverse set of target species 
for subsequent research, selected based on their social and timing capacities.

2. Comparative social timing until now

2.1. Does social timing exist in non-human animals?

To some extent, all animals can perceive time and interact with one another [17,18]. Indeed, mechanisms akin to 
social timing have been empirically shown in several species other than humans. Examples of species that display 
social timing include insects (fireflies: [19,20]; [21]; ants: [11]; bees: [22]), birds [23,24], and multiple mammalian 
species (e.g., bats: [25]; cetaceans: [26,27]; chimpanzees: [28]; macaques: [29]). Little is currently known about social 
timing in reptiles. This is not entirely surprising as reptiles are (in)famous for their purported lack of sociality [30]. 
Yet, some studies challenge this claim with evidence–in several reptilian species–of socially relevant skills, such as 
social learning [31] and gaze following [32,33]. These examples are noteworthy for multiple reasons: First, they 
highlight the need for systematic comparisons targeting not only species that have already received much attention 
(such as birds, primates, and humans), but also less studied and supposedly solitary species. Second, they show how 
even “non-social” animals can use social timing skills [34,35].

Social timing can serve different functions both between and within species. For example, synchronised swimming 
in cetaceans can have anti-predatory [26] and affiliative functions [36]. These examples underline the role of situa-
tional context in influencing both sociality and timing: for instance, in the presence of a predator an individual may 
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Table 1
Glossary.

Analogy Similarity between behaviours (or anatomical structures) across species, resulting from convergent evolution. Examples of 
analogous structures are the wings of bats and birds. They are analogous because their last common ancestor did not have wings, 
but similar pressures for flight resulted in similar structures.

Homology Similarity between behaviours (or anatomical structures) across species, which existed in or derive from a common ancestor. 
Examples of homology are the tailbone in humans and non-human animals (e.g., cats, dogs, chimpanzee, etc.), or upper limbs in 
humans (arms and hands) and bats (wings)

Convergent 
evolution

Chain of changes and adaptations leading different species to acquire a similar trait not necessarily present in their common 
ancestor. It is often caused by similarity in the living environments or functional pressures; for example, aerial environments and 
a pressure for flying led to the independent development of wings in birds, bats, and some insects.

Divergent 
evolution

Chain of changes and adaptations leading closely related species to increase their diversity due to, for example, migration, food 
competition, or genetic mutations.

Proximate 
cause

An event, which constitutes a direct or closest cause for an observed phenomenon, such as the environmental or physiological 
factors impacting a given biological function.

Ultimate 
cause

An event, which constitutes the past or functional cause for an observed phenomenon, such as the evolutionary force shaping a 
given biological function.

Time scale Basic unit of time that can be perceived or produced by a species

react by freezing (i.e., no observable change in behaviour is expected while the threat persists) or by finding safety in 
synchrony and numbers (e.g., schooling in fishes). This variability can occur both within- as well as between-species 
and can be used to gather information about the evolution of social timing: On the one hand, variability within in-
dividuals of a species provides the scaffold for natural selection to model social timing capacities. For example, if 
individuals characterised by advanced social timing skills also show higher than average reproductive output, then we 
might consider social timing as an adaptive behaviour favoured by sexual selection (see [37] and [38] for potential 
evidence in this direction). Furthermore, variability between groups of individuals within a species may contribute 
to defining social boundaries. For instance, human conversational turn-taking is characterised by universal features 
such as the avoidance of overlaps and the minimization of gaps between turns, which coexist alongside striking cul-
tural preferences for gaps of different duration [39]. Whether such variations in social timing also exist in non-human 
cultures remains to be further explored. On the other hand, between species comparisons are necessary for several 
reasons. First, social timing behaviours that look superficially similar may serve completely different purposes, thus 
implying different evolutionary origins. For example, synchronised swimming has been observed in both killer whales 
[40] and beaked whales [26], but while killer whales use this as a hunting technique, beaked whales swim together to 
avoid predation. A comparative approach is then needed to differentiate between cases of social timing resulting from 
convergent or divergent evolution (see Table 1). Second, different species developed idiosyncratic ways to communi-
cate depending on their habitat and ecology; for example, aquatic habitats make vocal communication more effective 
than visual communication. Therefore, the vocal capacity of aquatic mammals is particularly developed [13]. How-
ever, these two channels (acoustic and visual) are characterised by different time scales, and animals preferring either 
one or the other may communicate “at different tempi”. Similarly, visual communication may require proximity and 
close contact, thus limiting the number of individuals involved in the communicative process. These differences cas-
cade into different timescales of behaviours as well as different nuances of what it means to be “social”. This evidence 
is often disregarded in favour of a rather anthropocentric theoretical and methodological approach. For instance, the 
typical human preference for timing around 600 ms is often employed in studies targeting non-human animals, re-
gardless of each species’ specificity and temporal sensitivity [41]. These approaches affect the way different species 
are studied, and how their behaviours are interpreted, and stress the need for more comparative evidence.

2.2. Which mechanisms may support social timing?

While social timing seems to be a common trait across many species, its evolutionary trajectory is largely unknown, 
and so are the mechanisms supporting it. Different approaches have put forward alternative explanatory mechanisms, 
focusing on physiological, neural, cognitive, or emotional aspects as main drivers in the evolution of social timing. 
Each of these accounts predicts different relationships between timing and sociality, with either phenomena acting as 
a prerequisite, consequence of, or mutual reinforcer of the other (Table 2).
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A particularly influential view relates social timing to the effect of synchronised neural activity, which facilitates 
social interactions by making the agents’ behaviours mutually more predictable [42,43]. Neural synchronisation be-
tween interacting partners has been frequently observed not only in humans (for reviews see [44]; [45]; [46]), but also 
in rhesus macaques [47], Egyptian fruit bats [48,25], rodents [49], and birds [1]. However, the causality among social 
interaction, synchronised neural activity, and synchronised behaviour is not yet clear. Some authors propose that the 
coordination of brains is required for social interaction [25], yet this claim is currently only confirmed in a few species 
and extremely problematic to test in others (e.g., for example in insects due to size and/or ecology–but see [50,51]
for recent advances in insects neuroimaging). Furthermore, new evidence from plants may significantly challenge this 
hypothesis (see Paragraph 5). While Omer, Zilkha, and Kimchi [52] advocate the use of tools such as microstimula-
tion, optogenetics, or genetic manipulations (p. 273), we add that the use of ethorobots (i.e., social robots created by 
keeping in mind the rules of animal behaviour) might represent a non-invasive complement to explore social timing in 
a more naturalistic way. Indeed, the use of ethorobots may allow for more fine-grained testing of specific hypotheses 
by manipulating behaviours with extreme precision and in a controlled, yet ecologic environment.

Other accounts highlight physiology as a building block of temporal-social behaviour ([53]; see also [54,55]). 
Physiological responses are often expressed by repetitive patterns in time (e.g., rhythms) that are intertwined with so-
cial signals [56–58]: for example, heart rates synchronise between humans in a wide range of social contexts [59,60], 
banded geckos group together to reduce their evaporative water loss [61], and several other species show synchronised 
breathing especially in intense social contexts (cetaceans: [62,63,36,27]; fishes: [64]; birds: [65]). Interestingly, res-
piration and olfaction can carry social signals transmitted by neuropeptides–such as oxytocin and vasopressin–which 
are known to modulate social behaviour ([66,53]; but see [67] for a critical viewpoint on oxytocin). In turn, respiratory 
and olfactory rhythms can entrain brain activity [68,55,69], and modulate attention [70–73], social learning [35], and 
other cognitive functions. Thus, physiological rhythms and social context may influence each other [74,61].

Cognitive and psychological models stress the importance of mentalizing (Theory of Mind)—the capacity to track 
the intentions, desires, and beliefs of others ([75]; see also [76]). In this process, intrinsic motivation is a major force in 
interacting with others [77]. In line with these models, the recent self-domestication hypothesis puts pro-sociality and 
the early emergence of cooperative and communicative abilities at the centre stage of cognitive evolution [78]. While 
timing is not explicitly mentioned in these models (but see [79]), neurological conditions affecting Theory of Mind and 
social interaction (e.g., autism spectrum disorder) are associated with limited temporal processing capacities ([80,81]; 
but see also [82,83]). Yet, these psychological and cognitive models are typically human-based and are difficult to 
extend to other species.

It is important to note that these proposed mechanisms (i.e., neural, physiological, cognitive/psychological) are 
not mutually exclusive: as shown by the reciprocal influence between respiratory and neural rhythms, they mutually 
influence each other [68]. Due to this complex interaction, it is difficult to disentangle how and to what extent each 
mechanism specifically contributes to social timing. Furthermore, multiple mechanisms may have been adapted in 
response to different evolutionary pressures, acting on different species and resulting in convergent or divergent evo-
lution of sociality and timing. Specifically, this implies that different constellations of mechanistic interactions may 
have led to similar outcomes across species. As we propose in the following sections, one way to overcome this issue 
is by systematically testing species that vary widely in their biological and cognitive capacities.

Table 2
Summary of the main mechanisms hypothesized to support social timing.

Proposed mechanism Sub-components Challenges Sociality-timing relationship

Neural activity • Frequency bands • Non-invasive
• Difficulties for small brains
• Requires at least single neurons

Timing → sociality

Physiology • Breathing
• Locomotion
• Heart rate
• Hormonal system

• Extreme inter-species variability
• Requires specific organs

Sociality ↔ timing

Cognition • Theory of Mind
• Motivation

• Testing in non-human animals
• Intrinsic vs. extrinsic motivation

Sociality → timing
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3. A new framework for social timing: evolutionary bootstrapping

So far, we have reviewed evidence on social timing across species and the possible mechanisms supporting this 
capacity. We also identified several shortcomings that need to be addressed: Most studies focus on single-species 
and a single-methodology approach, while direct cross-species comparisons and multi-methodological studies are 
rare. In addition, comparative studies often adopt an anthropocentric viewpoint, both at the theoretical as well as the 
methodological level. To overcome these limitations, we propose a novel incremental framework to systematically 
compare human and non-human species characterised by varying social and timing capacities. The use of multiple 
methodologies will further allow exploring different possible mechanisms supporting social timing and their mutual 
dynamics. This approach should proceed in incremental small steps that allow testing progressively more complex 
and contrasting hypotheses on the evolution of social timing along a continuum between homology and analogy.

In the following, we outline a potential roadmap for applying this framework that hinges on four main points: 
i) basic operational definitions that can be applied to most species, ii) an initial set of representative test species, iii) 
feasible methods, mindful of each species’ timescales and peculiarities and allowing to integrate different mechanisms 
(e.g., neural, physiological, behavioural), and iv) targeted research questions and hypotheses.

3.1. Operational definitions

We conceive social timing as a dynamic phenomenon of mutual adaptation in time between two or more agents 
that supports rewarding communicative acts and/or acts necessary for survival. Under this broad definition, we can 
include several instances of coordinated timing, from synchrony (as in chorusing) to turn-taking [6]. In this sense, 
social timing is akin to “allelomimetic behaviour”, defined as “any behaviour in which animals do the same thing 
with some degree of mutual stimulation and consequent coordination” ([84] cited by [85]). Importantly, this definition 
reconciles phenomena occurring in different social contexts, both affiliative and aversive, that co-exist in all animal 
societies [86,54].

Within the broader umbrella term, the constituents “social” and “timing” still need to be defined in operational 
terms to index and quantify their corresponding behaviours. Sociality is often considered synonymous with social 
interaction—loosely intending the behaviours occurring when two or more individuals interact—and contrasted with 
isolation or solitary living (for example see [15]). A more complex spectrum is proposed in some disciplines, such as 
in research on insect behaviour and phylogeny. For example, Richards [22] draws from an extensive literature to code 
bee species according to five different classes of sociality: solitary, sub-social, social, eusocial, and hyper-social; the 
main distinction between these categories is the behaviour of the females during parturition, nesting, and upbringing 
of the prole. Richards’ effort stems from the fact that numerous and often inconsistent definitions apply not only across 
related species, but also within taxa. Some authors stress the relevance of social behaviour for individual and group 
fitness ([87]; in humans: [88]; in baboons: [89]; in marsupials: [90]), mutual understanding [91], and individual recog-
nition (in pinnipeds: [92]; in macaques: [93]). Among these, individual recognition based on visual or acoustic cues is 
often cited across species as an indication of social complexity [86]. Yet, tackling some of these aspects may be chal-
lenging, especially across species; for example, fitness is very difficult to gauge directly in long-living species, such as 
mammals [87]. Furthermore, indices of sociality vary: at the species level, they may include group size, group com-
position (ratio of females to males), and type(s) of social bonds [94,87]; at the individual level, they may incorporate 
overt social behaviours such as grooming and proximity (e.g., [89]), synchronised behaviour (for example, breathing 
in cetaceans: [63]; breathing in fishes: [64]; pecking in chickens: [85]), pair-bonding, male parental investment, and 
cooperation [95]. Often, these indices depend on the field of study; for example, cetaceans research frequently em-
ploys association (e.g., how often dyads are observed together; [96]). Across fields, a very simple and useful proxy for 
sociality is spatial proximity [85,97,89]: Individuals engaged in (especially affiliative) social exchanges tend to move 
closer in space. This basic measure can be used in small groups as well as in more complex settings, studying social 
networks with automatic techniques and in the wild. These methods allow distinguishing between spatial proximity 
due to true social interaction or simple spatial association; for example, in case of true social interactions individu-
als may cluster together in a non-random way (e.g., forming recurrent dyadic associations, possibly with a common 
goal), while spatial associations occur when individuals randomly cluster together in space and/or time without any 
preferred association and without getting any benefit from each other, but rather competing for available resources (in 
white sharks: [98]).
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Regarding timing, we refer to the capacity to encode, decode, and process events—with a specific focus on their 
temporal dimension—and to temporally align with the environment [99]. Once again, this definition is rather broad but 
contains key elements that makes it applicable in comparative contexts: i) it covers both aspects of time perception (i.e., 
capacity to perceive and discriminate different time patterns and time durations) and time production (i.e., capacity to 
produce or reproduce temporal patterns); ii) it covers the capacity to dynamically adapt to changes in temporal patterns 
as a response to perturbations in the environment; iii) it refers to timing in the sub seconds-to-minutes timescale, as this 
is the most relevant for social interactions (see also [54]). While circadian and ultradian timescales are also relevant 
for social interactions (e.g., seasonal trends for courtship, mating, and birth cycles), they do not play a role in the 
fast rhythm of social exchanges and are not the focus here. We suggest that a comparative study of timing should 
at first establish basic timing capacities, such as preferred temporal rates and temporal discrimination thresholds. 
These measures are largely unknown in many species (see Table 3) but are crucial to construct species-appropriate 
paradigms and establish reliable baselines for inter-species comparisons [41,54]. Simple timing tasks may reveal 
surprising truths; for example, a visual time discrimination task showed that harbour seals possess a well-developed 
sense of timing and are capable of discriminating temporal durations partly in the milliseconds range [100–102]. 
While this series of studies did not test spontaneous time discrimination, they might guide further investigations of 
basic timing capacities.

3.2. Key test species

To facilitate future research, we propose a selection of representative species covering:

1. A spectrum of social capacities. For examples, we include prairie voles, a model species for high sociality [103]
as well as several reptiles, which are considered solitary (non-social) animals.

2. A spectrum of (potentially) varied timing capacities. In this case, we include songbirds as a prime example for 
timing skills [104] as well as sloths, renowned for their slow timing. These timing capacities are based on time 
production rather than perception, as this is most easily observed in non-human animals (see paragraph 3.4.3 for 
details).

3. Species with potential to combine timing and sociality directly; for example, songbirds are well known for their 
capacity for social learning as well as for fine-grained temporal skills in vocal production ([23,105]; see also [106]
for a review on vocal learning in non-oscine birds).

4. Species spanning different taxonomic levels; this is necessary to reconstruct the phylogeny of social timing and 
its evolutionary routes (convergent, divergent, etc.).

5. Species over a broad range of evolutionary distance from humans, to clarify whether social timing, as we define 
it, is a relatively recent adaptation, anciently rooted or convergently evolved.

Table 3 summarises, for each of these points, the available information on social and timing capacities in a selection 
of species that we deem particularly suited for comparative research on social timing. This list aims at providing a 
reasoned and reasonable steppingstone to test several important hypotheses on the phylogeny and evolution of social 
timing. Yet the list is not exhaustive and provides a broad overview, covering different modalities and effectors. Ad-
hoc systematic reviews and meta-analyses targeting social and timing capacities within an order or class could also 
facilitate the identification of preferred time scales for specific forms of time (re)production (e.g., vocalisation or body 
movements).

3.3. Hypotheses

Several hypotheses can be formulated on the evolutionary trajectory of social timing in a multi-methodological 
space involving the mechanisms discussed above.

Main hypothesis – The main operational hypothesis on social timing can be formulated as a combination of null and 
alternative hypotheses. Under the null hypothesis, sociality and timing evolved independently with minimal reciprocal 
influence. This hypothesis predicts that we should be able to observe species with comparable social characteristics 
and different timing capacities, and vice-versa. The alternative hypothesis is that timing and sociality did not evolve 
independently; rather, at some point during animal evolution, they became functionally or mechanistically linked. 
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Table 3
Selection of species proposed to test social timing, reason for selecting them, and current knowledge of their social and timing capacities
synchronisation), also see [41]. The divergence time (evolutionary distance from humans) is reported as a median distance on published res
timetree .org/). The scientific name is not indicated when i) we could not find literature on a specific species or ii) we assume inter-species diffe

Species Taxonomic order 
(class)

Rationale Sociality Timing

Chimpanzee
Pan troglodytes

Primates 
(mammalia)

Proximity to humans Highly social, aggressive, marked 
differences between sexes 
[107,108]

2.2–2.8 Hz (tappi
see also [110])

Bonobo
Pan paniscus

Primates 
(mammalia)

Proximity to humans Highly social, reduced aggression 
[107,108]

4.6 Hz (drummin
3–4 Hz (hooting;

White-handed 
gibbon
Hylobates lar

Primates 
(mammalia)

Proximity to humans; timed 
vocal behaviour in duets

Unknown 3.1 Hz (male solo

Marmosets
Callithrix jacchus

Primates 
(mammalia)

Relatively distant from 
humans, highly social, 
structured vocalizations

Highly social [113,95] 2 Hz (vocalisation

Macaques
Macaca spp.

Primates 
(mammalia)

Intermediate evolutionary 
distance from humans, highly 
social

Highly social [95]
Sexual-social dimorphism (female 
form social bonds; [89]

5.7 Hz (teeth cha
[115]

Baboons
Papio spp.

Primates 
(mammalia)

Intermediate evolutionary 
distance from humans, 
complex social structure

Complex social structure, 
multilevel society [116]

Unknown

Zebra finch
Taeniopygia 
guttata / 
Taeniopygia 
castanotis

Passeriformes 
(aves)

Model system for social 
learning

Highly gregarious, influenced by 
social context [117]

25–45 Hz (song p

Red footed tortoise
Geochelone 
carbonaria

Testudines 
(Reptilia)

Solitary reptile Solitary animal, capable of social 
learning [31]

Unknown

https://timetree.org/
https://timetree.org/
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Table 3 (continued)

Species Taxonomic order 
(class)

Rationale Sociality Timing

Grainy Cochran 
frog
Cochranella 
granulosa
(Centrolenella 
granulosa)

Anura (Amphibia) Cooperative species, 
amphibian

Cooperative behaviour via 
acoustic alternation [119]

Unknown

Panama 
cross-banded tree 
frog
Smilisca sila

Anura (Amphibia) Cooperative species, 
amphibian

Proposed cooperative behaviour 
via acoustic synchrony [119]

.03 Hz [119,120]

Zebra fish
Danio rerio

Cypriniformes 
(Actinopterygii)

Model of social cognition and 
social phylogeny

Highly social (visual), form 
groups in adulthood to avoid 
predation [121,122]

Max 9.5 cm/s sw
speed [123]

Fiddler crabs Decapoda 
(Malacostraca)

Visual social timing Highly social, rich behavioural 
repertoire [124]

1.7 Hz (claw wav

Cricket Orthoptera 
(Insecta)

Group living insects, 
chorusing displays

Group living, establishment of 
social status without recognition 
[126]; stable social structure [127]

2.2–2.6 Hz (snow
cricket, stridulatio

Nematode
Caenorhabditis 
elegans

Rhabditidae 
(Rhabditida)

Basic model, lacks respiratory 
or circulatory systems (useful 
to test physiology)

Food-related interactions: 
adult-larvae (oxytocin-dependent) 
and adult aggregation [129,130]

1.9 Hz (undulatio
[131])

Aplysia
Aplysia spp.

Gastropoda Neuroscience model, few big 
neurons

Unknown, possibly solitary living 
[132]

0.5–1 s inter-stim
for conditioning [

Rat
Rattus norvegicus

Rodentia 
(mammalia)

Neuroscience model Social animals displaying several 
affiliative behaviours [134]

20–25 kHz / 30–8
(ultrasonic vocali

Mouse
Mus musculus

Rodentia 
(mammalia)

Neuroscience model Social animals displaying several 
affiliative behaviours [134]

8–12 Hz (sniffing
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Table 3 (continued)

Species Taxonomic order 
(class)

Rationale Sociality Timing

Prairie voles
Microtus 
ochrogaster

Rodentia 
(mammalia)

Social model Monogamous, strong adult pair 
bonding [137]

Unknown

Meadow voles
Microtus 
pennsylvanicus

Rodentia 
(mammalia)

Contrasted with prairie voles Polygynous [137] Unknown

Harbour seal
Phoca vitulina

Carnivora 
(mammalia)

Known capacity for temporal 
discrimination

Mother-pup interactions, social 
play in pups, semi-solitary living 
[138]

Time perception 
(discrimination) s
humans [100–102

Grey seals
Halichoerus 
grypus

Carnivora 
(mammalia)

Direct comparison with 
harbour seals

Mother-pup interactions, social 
play in pups, group living 
[139,140,138]

Unknown

California sea lion
Zalophus 
californianus

Carnivora 
(mammalia)

Capacity to synchronise with 
external temporal stimuli 
[141]

Colonial living, displays 
synchronised swimming [142]

1–2.5 Hz (barking
under water; [143

Sloths
Bradypus spp.

Pilosa (mammalia) Slow movements Little known; Bradypus variegatus
has solitary social structure [144]

Unknown

Egyptian fruit bat
Rousettus 
aegyptiacus

Chiroptera 
(mammalia)

Highly social, available 
neural data

Stable social groups, large 
colonies, familiarity 
discrimination [145]

20–100 ms time i
between click pai
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Fig. 1. Phylogenetic tree describing the relationships between the representative species described in Table 3 and including humans (Homo sapiens) 
as a reference point. Notice that the tree is unscaled: branch length does not encode divergence time or genetic divergence. As the literature on 
fiddler crabs and crickets focuses on different species, Austruca annulipes and Oechantus fultoni were used here as examples (cited respectively in 
[125] and [128]).

Under this hypothesis, social species should outperform non-social species in their timing capacities; conversely, 
predominantly solitary (non-group living) species should have worse timing performances compared to social (group 
living) species. It is important to clarify that both sociality and timing are not intended as dichotomous categories; 
rather, each of them should be considered as a spectrum along which different species can be positioned based on 
their own capacities. In turn, this variability may inform the evolutionary pressures that moulded social timing in each 
species.

Follow up research questions – When rejecting the main null hypothesis, several follow-up options for alternative 
hypotheses arise (i.e., a co-evolution of sociality and timing). The logical next step would be to investigate ‘when’
and ‘how’ the coupling started. The proposed set of test species allows addressing the ‘when’ question: by targeting 
sociality and timing across distantly related species, an evolutionary scale can be added as an explanatory factor, 
allowing research questions related to the evolutionary pressures that enabled social timing to be investigated (i.e., 
convergent, or divergent evolution? see Table 1 and Figure 1). The ‘how’ question relates to the specific effect of 
single mechanisms (e.g., neural synchronisation, synchronised physiological responses) in the evolution of social 
timing. Is “optimal” social timing driven by one specific mechanism or does one mechanism predominate the other? 
We propose that the compound effect may be additive (i.e., “optimal” social timing is achieved when all mechanisms 
are in synchrony), but that inter-species variability may be rather large. For example, synchronised breathing seems 
to be a crucial factor in marine mammals, but it may be less relevant for other species.

3.4. Methodological suggestions

As previously mentioned, comparative approaches to social timing often suffer from methodological shortcomings, 
most notably by the adoption of an anthropocentric approach: in many studies, non-human animals are trained to 
produce a typically human behaviour, without considering their specific environment, behaviours, and capacities. We 
rather converge with other authors [41,54] in expressing a need to adopt an ecological approach to comparative studies. 
In the following sections, we provide methodological suggestions for researchers interested in this topic.
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3.4.1. Observed behaviours
First, a naturalistic investigation of social timing should consider species-specific behaviours that the species is ex-

pected to naturally display in the absence of training or reinforcements. The rationale for this proposition is related to 
the evolutionary pressures that led to social timing, which are significantly altered when reinforcing a given behaviour 
in a laboratory setting. Thus, research conducted with rewards and computer testing (e.g., computer games and con-
soles; [147,148]), while extremely informative, tackles different questions and is beyond the scope of our proposed 
research line. This is not to say that research on social timing should be strictly observational: on the contrary, we 
propose that cross-species approaches should be complemented with those coming from mathematics, agent based 
modelling, and complex system sciences, to name a few ([149–152]; see also [153]). An example of this approach 
can be found in Ravignani [154], who tested several agent based models against empirical data to evaluate the tim-
ing capacities of harbour seals [155,156]. The model best describing the data corresponded to a seal pup adjusting 
her vocalisations to achieve a relative-phase anti-synchrony with other conspecifics’ calls. This example reflects the 
importance of modelling for testing several alternative hypotheses against real empirical observations. In addition, 
nuances on potential mechanisms can be uncovered by using multiple, complementary approaches on the same data 
[155].

Importantly, modelling can facilitate testing both neural and non-neural models of behaviour, thus being potentially 
applicable to animal species for which the neural dynamics are unknown. For example, the behaviour of simple 
coupled oscillators [152,157] can be used to describe interactive dynamics at the neural level (e.g., Hebbian plasticity; 
[158]) and could represent an intriguing way to test higher-level social timing behaviour. At the group level, one can 
model individuals as single oscillators, and test whether the (known) social characteristics of the species correspond to 
the coupling strength among the single oscillators. Alternatively, techniques from game theory can be used to model 
strategic interactions among oscillators, to then study the resulting group timing pattern, for instance synchrony [159]. 
In general, we envision the need for a modelling framework that can encompasses at least three complementary 
levels: 1) individual neural dynamics, 2) individual psychology and psychophysics, and 3) social cognition and group 
interaction [160,161]. Each of these explanatory levels could be or is already modelled with respect to its temporal 
dynamics. Ideally, a unified framework connecting all three levels could help integrate results and intuitions between 
contiguous levels. As suggested above, oscillatory models, such as the Kuramoto model, could work at these different 
scales [162]. Modelling formalisms could be used, rather than as statistical tools, to run simulations and explore the 
space of possible parameters at the three different descriptive levels.

Taking these suggestions one step further, we propose that sociality and timing can be empirically manipulated 
in inanimate subjects to confirm natural models (e.g., ethorobots; [163]; for a review: [164,165]). Ethorobots have 
been successfully employed to study social behaviours in several species, including zebrafish [166] and bees [167]. 
A main advantage of these methods is the ability to manipulate timing with extreme precision and under different 
contextual conditions (e.g., response to a predator, [168]. This latter point connects with the necessity to also consider 
each species’ inherent capacities, preferred time scales, and contextual conditions [41]. This is a second advantage in 
these approaches, as opposed to computerized adaptive testing: interactions with ethorobots are embodied, with all 
the added naturalness this entails, and may better fit a species’ perceptual and cognitive niche (e.g., [169]).

3.4.2. Experimental designs
To achieve a well-rounded understanding of social timing, we further propose a basic experimental design that can 

be replicated (with the necessary adjustments) across species. At a minimum, solitary behaviours should be contrasted 
with dyadic interactions; this basic unit can (and should) be stepwise enriched with group settings (e.g., more than 
three individuals), interaction with robotic agents, and mathematical modelling. The solitary condition is required 
to establish a baseline for timing behaviours (e.g., preferred spontaneous tempo), which can be contrasted not only 
with social conditions within a species, but also to evaluate timing capacities between species. Dyadic interactions are 
a natural next step, as dyads represent in many species a basic level of social interactions [86]. In dyads, timing is 
influenced by several contextual factors (e.g., leader-follower dynamics; in humans: [170]). Group settings reflect and 
amplify dyadic interactions, while further adding group-specific dynamics [86]. Thus, this extension would allow an-
swering questions as to whether social timing, for a given individual, is influenced by the size of their social entourage. 
The contrast with ethorobots and mathematical modelling allows researchers to directly test multiple hypotheses and, 
in the case of robotic agents, has the inherent advantage of allowing a direct intervention of the behaviour under 
observation.
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Fig. 2. Multi-methodological social timing set-up in a representative species (mouse). Multiple measurements should be collected to characterise 
the mechanisms underlying social timing in each species. Movement sensors (green) should be used to test for motion timing (e.g., gait speed); 
breathing (blue) and heart rate (red) can be measured with specific sensors to inform physiological rhythms; brain electrodes (orange) can track an 
individual’s neural activity. In a dyadic setting, the same measures can be collected between two interacting individuals to inform on inter-individual 
synchronisation. Importantly, the figure depicts the maximum level of methodological complexity that should represent a final stage of incremental 
complexity from single-method settings.

3.4.3. Collecting data
How can we measure social timing, in a responsible comparative way, across species that have very little in com-

mon? We propose to start by targeting very basic social features and timing capacities. Concerning sociality, spatial 
proximity (i.e., the distance between two or more individuals) is a good candidate [85,97,89]. This basic measure can 
be i) easily obtained in experimental settings as well as in the wild, ii) measured in groups of different sizes, from very 
small to very large, and iii) easily complemented by mathematical models of social networks [171,116,172]. Simi-
larly, timing skills should reflect a basic ability to perceive and (re)produce time as indicated by spontaneous motor 
tempo and sensorimotor synchronisation abilities. On the one hand, spontaneous tempo can be easily obtained in a 
species-specific approach from natural behaviours (such as walking gait, swimming stroke, pecking) in most species, 
including microorganisms like nematodes [173,174]. The characteristics make spontaneous tempo a promising base-
line candidate for comparing timing scales and capacities across species. On the other hand, synchronisation abilities 
constitute the backbone of social timing, which is heavily based on the capacity to dynamically adapt in time. To 
measure this capacity, basic synchronisation measures (i.e., asynchronies, lagged correlations, beat synchronisation, 
etc.) should be collected [175]. In both cases, we propose that timing production—rather than perception—should be 
targeted, as it can be more easily obtained even from simple observation of natural behaviours, while time perception 
may require more complicated set-ups, for example involving reward-based training (but see [176] for a case of an 
experimental study not requiring external reward and [177] for a discussion of intrinsic reward in related contexts).

Lastly, to consider different mechanisms, the proposed measures should be complemented—in each sociality 
condition—by recordings of neural activity, physiological rhythms and (when possible) cognitive investigations into 
social capacities such as theory of mind [178], ideally simultaneously for multiple individuals (hyperscanning, see 
above; e.g., [25]). The simultaneous recording of neural, behavioural, and physiological data (Fig. 2) may shed light 
on the mechanisms preferentially used by each target species in response to environmental contingencies, but also 
on how different mechanisms organize dynamically to optimize behaviour [68,179]. Multi-methodological set-ups of 
this kind represent a higher level of investigation and require ad-hoc solutions for each species; for example, some 
animals, such as marmosets, can only be tested if unrestrained [95], thus requiring wireless methodology.

4. Feasibility and challenges

The adoption of a comparative framework to social timing presents remarkable challenges as it requires measuring 
the same parameters in species with different biological and environmental characteristics. While our proposition to 
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target basic skills aims at minimising this issue, there are at least two caveats. First, and foremost, differences between 
species hamper a systematic study of the mechanisms we identified as possible pillars of social timing. For example, 
neural synchronisation requires the presence of neuronal assemblies—if not entire brains (but see the next paragraph 
for a provocative perspective). However, this shortcoming can be used to further test evolutionary hypotheses on the 
relative contribution of different mechanisms to social timing; in other words: In the absence of a complex, organised 
assembly of millions of neurons, can we still see evidence for social timing? If so, what is the driving force? Research 
into “simple” organisms, such as C. elegans or Aplysia spp., may be quite informative to answer such a basic question. 
Due to the simplicity of their neural and motor systems, these organisms are perfect candidates for modelling and 
testing specific hypotheses [180–182].

The second challenge is purely technical: some techniques, routinely employed in human studies, are not read-
ily accessible for non-human animals. For example, non-invasive electroencephalography, a cornerstone of human 
neuroimaging, has been used with some success in a few species (such as cetaceans: [183–185]). Instead, for most 
species invasive recordings represent an easier alternative and are still preferred to this day (for example in pinnipeds: 
[186–188]). Despite their relative ease of use, these invasive methods are ethically questionable and have led in recent 
years to an increasing interest in the development of their non-invasive counterparts. For example, silicon cups have 
been used to cover external electrodes in cetaceans, allowing for non-invasive EEG recordings [189,184].

The last challenge is also an invitation to the broader scientific community: a comparative approach to social timing 
can only be effective with a large-scale collaborative empirical and theoretical effort across multiple disciplines and 
researchers. For example, systematic reviews and/or meta-analyses of social timing capacities focused on specific 
animal groups may jump-start experimental approaches, by providing a clear overview of which species have already 
been tested and which capacities they possess, while highlighting what remains to be targeted. Only in this way would 
it be possible to complete and expand Table 3, and to ultimately reconstruct accurate phylogenies of social timing—we 
suggest, one of the most widespread behaviours in nature.

5. Exceptional cases of social timing: cross-species and plant-based

While social timing within a species seems to be rather ubiquitous, very little is known about social timing between 
members of different species. A series of studies explored cross-species social interaction between domestic dogs and 
their owners and found evidence for synchronised behaviour (such as locomotion and gaze, both indoor and outdoor; 
[190–192]), and in response to unfamiliar objects [193]. Even more interestingly, and similarly to humans, dogs 
showed social preferences toward people who synchronise with them [190]. In wild (non-domesticated) animals, 
cross-species social timing has been observed within the primates’ order, especially between human and non-human 
primates. For example, capuchin monkeys, a highly social primate species, show a preference for humans who imitate 
the monkey’s actions [194], while bonobos show signs of tempo matching, entrainment, and synchronisation with a 
human experimenter in a joint drumming task [111].

While these examples testify that cross-species social timing may occur, at the moment they are limited to a few re-
ports of interactions between our own species and others that are either evolutionary close (i.e., non-human primates), 
or that have been selected to live with humans, respond to their behavioural and emotional cues, and forge strong 
affiliative bonds with their owners (e.g., dogs, [192]; horses, [195]). This evidence invites several questions such as: 
how much similarity (or evolutionary closeness) is necessary for between-species social timing? This question has 
several implications concerning the proposed mechanisms and methods of study. In the already mentioned studies 
by Duranton and colleagues, the authors targeted locomotion to facilitate cross-species comparisons ([192]; see also 
[196]). Yet, what could be tested in an interaction between extremely distant species such as humans and fish? The 
possibility of time-based interaction in this case seems unlikely: because of the differences in their biological char-
acteristics and ecological niches, it is difficult to imagine how members of evolutionary distant species could benefit 
from sharing time in their interactions. A different scenario emerges in the case of domestication and “forced social-
ity”, in which members of different species—for example humans and pet dogs—are forced to interact together in a 
shared environment. The effect of this on the development of social timing is unknown as the ability of pet dogs to 
synchronise with humans may be the result of genetic selection, of the evolutive and social pressure deriving from liv-
ing with humans, or it may have been already present in a common human-dog ancestor (for a discussion: [190,192]). 
Studies on domestication of wild foxes begin to approach this question, by showing that social cognition in these 
canids evolved as a by-product of domestication [197]. It would be interesting to compare domesticated foxes with 
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both wild foxes and pet dogs, to clarify how these animals differ in their general timing capacities as well as in their 
capacity to synchronise with humans. Lastly, in all these cases, cross-species social timing occurs between humans 
and another species. Whether cross-species social timing can occur between two non-human species is a fascinating, 
albeit challenging, open question.

Another open question concerns whether social timing can occur outside of the animal kingdom: in proposing the 
evolutionary bootstrapping framework for social timing, we implicitly focused on animal species under the assumption 
that they should possess an albeit rudimentary nervous system to appreciate sociality and timing. Can this assumption 
be challenged? In recent years, several studies revolutionised established knowledge, by showing that action potentials, 
the basis of neural transmission, can be induced and measured in plants [198–200]. But can plants display social-like 
behaviours? Recent evidence completely overturned the idea of plants as passive living beings, by showing that they 
can interact with their surroundings and even respond differently to “kin” and “foes” [201–203].

Taken together, this cross-species evidence highlights even more the importance of social timing as a ubiquitous 
phenomenon. Yet, it also encourages to further reflect on its proposed mechanisms.

6. Conclusion

Social timing, the mutual adaptation in time of interacting agents, is a ubiquitous natural phenomenon. Decades of 
studies have demonstrated the pervasiveness of this phenomenon across human and non-human activities. However, 
where did it come from? To start answering this question, we have reviewed a set of separate literatures, describing 
phenomena that, albeit with different names, can be reconciled within the broad umbrella of social timing. We high-
light the difficulties in tackling this topic from several angles and the various mechanisms proposed as building blocks 
of timely interactions. From this overview, we moved forward to advocate for a comparative naturalistic approach, 
necessary to build and contrast evolutionary trees of social timing towards and beyond the crucial branch represented 
by our own lineage. This approach should be systematic, yet flexible enough to consider each species’ biological and 
ecological characteristics. In addition, we discuss recent advances in robotics and modelling which should be an inte-
gral component of comparative studies, enabling the integration of cross-species and quantitative approaches. These 
suggestions and proposition should facilitate future research, ultimately leading to an integrated empirical-theoretical 
paradigm of social timing — an essential component of many life forms on earth.
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